当前位置: 首页 > ops >正文

熵最小化Entropy Minimization (二): 案例实施

前面介绍了熵最小化、常用的权重函数汇总、半监督学习:低密度分离假设 (Low-Density Separation Assumption)、标签平滑、信息最大化等相关的知识点,本文采用一个MNIST10分类的数据集来进一步体会它们的效果。

案例实施

对比方法

  • 纯监督学习方法(”supervised“):仅含10%的标签数据。(损失函数=监督损失)
  • 熵最小化方法(“entropy”):10%的标签数据+无监督数据。(损失函数=监督损失+熵最小化损失)
  • 伪标签方法(“pseudo”):10%的标签数据+无监督数据(伪标签),即将模型预测置信度大的标签作为对应样本的伪标签。(损失函数=监督损失+伪标签监督损失)
  • 熵最小化+伪标签(“pseudo_entropy”):10%的标签数据+无监督数据(生成伪标签)。(损失函数=监督损失+熵最小化+伪标签监督损失)
  • 信息最大化(“inform_max”):10%的标签数据+无监督数据。损失函数=监督损失+信息最大化损失。

代码

说明:

  • create_semi_supervised_dataset():表示从全体训练数据集中随机选取指定比例的带标签和不带标签数据,用于训练。
  • entropy_loss():熵最小化损失函数。
  • LabelSmoothingCrossEntropy():标签平滑交叉熵,效果可能会比交叉熵好,本文用的是timm包中的代码。
  • inform_max_loss():信息最大化损失函数。
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
import random
import argparse
from timm.loss import LabelSmoothingCrossEntropy
import torch.nn.functional as F
from torch.utils.data import TensorDataset, DataLoaderdevice = torch.device("cuda")def parse_args():parser = argparse.ArgumentParser(description='train')parser.add_argument('--compare', type=bool, default=True, help='比较所有方法')parser.add_argument('--method', type=str, default='inform_max', choices=['supervised', 'entropy', 'pseudo', 'pseudo_entropy', 'inform_max'])# 数据集参数parser.add_argument('--data_path', type=str, default='G:\CV_opensource_code\datasets\mnist', help='MNIST数据集路径')parser.add_argument('--download', type=bool, default=False, help='是否下载MNIST数据集')# 训练参数parser.add_argument('--epochs', type=int, default=1000, help='训练轮数')parser.add_argument('--bs', type=int, default=128, help='batch size')parser.add_argument('--optimizer', type=str, default='adam', choices=['adam', 'sgd'], help='优化器类型')parser.add_argument('--lr', type=float, default=0.001, help='学习率')parser.add_argument('--label_smooth', type=bool, default=True, help='采用标签平滑损失或者交叉熵损失')# 半监督参数parser.add_argument('--labeled_ratio', type=float, default=0.1, help='整个训练集中带标签样本比率')parser.add_argument('--lambda_et', type=float, default=.5, help='IM的熵损失权重')parser.add_argument('--lambda_div', type=float, default=.5, help='IM的多样化损失权重')parser.add_argument('--alpha', type=float, default=0.5, help='无标签损失的权重')parser.add_argument('--confidence_threshold', type=float, default=0.95, help='伪标签的置信度阈值')args = parser.parse_args()return argsdef set_seed(seed):random.seed(seed)np.random.seed(seed)torch.manual_seed(seed)if torch.cuda.is_available():torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)torch.backends.cudnn.benchmark = Falsetorch.backends.cudnn.deterministic = Truedef create_semi_supervised_dataset(dataset, labeled_ratio=0.1):labeled_indices = []unlabeled_indices = []targets = np.array(dataset.targets) # labelfor i in range(10):class_indices = np.where(targets == i)[0]np.random.shuffle(class_indices)n_labeled = int(len(class_indices) * labeled_ratio)labeled_indices.extend(class_indices[:n_labeled])   # 取labeled_ratio比率的样本作为带标签的样本unlabeled_indices.extend(class_indices[n_labeled:]) # 剩余的作为未标记的return torch.utils.data.Subset(dataset, labeled_indices), torch.utils.data.Subset(dataset, unlabeled_indices)class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(1, 32, 3, 1)self.conv2 = nn.Conv2d(32, 64, 3, 1)self.dropout1 = nn.Dropout2d(0.25)self.dropout2 = nn.Dropout(0.5)self.fc1 = nn.Linear(9216, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = nn.functional.relu(self.conv1(x))x = nn.functional.relu(self.conv2(x))x = nn.functional.max_pool2d(x, 2)x = self.dropout1(x)x = torch.flatten(x, 1)x = nn.functional.relu(self.fc1(x))x = self.dropout2(x)return self.fc2(x)def entropy_loss(predictions):probabilities = torch.softmax(predictions, dim=1)log_probs = torch.log_softmax(predictions, dim=1)entropy = -torch.sum(probabilities * log_probs, dim=1)return torch.mean(entropy)def inform_max_loss(logits, lambda_div=0.1, lambda_et=1.,  eps=1e-8):# 计算softmax概率probs = F.softmax(logits, dim=1)# 1. L_ent: 熵最小化损失,使预测更确定entropy_per_sample = -torch.sum(probs * torch.log(probs + eps), dim=1)entropy_loss = torch.mean(entropy_per_sample)# 2. L_div: 多样性最大化损失, 使类别分布均匀mean_probs = torch.mean(probs, dim=0)  # 边缘分布,由于样本是独立同分布的,这里考虑概率的平均值而非总和diversity_loss = -torch.sum(mean_probs * torch.log(mean_probs + eps))# L_IM总损失total_loss = lambda_et * entropy_loss - lambda_div * diversity_lossreturn total_lossdef evaluate(model, test_loader):model.eval()correct = 0total = 0with torch.no_grad():for inputs, labels in test_loader:inputs, labels = inputs.to(device), labels.to(device)outputs = model(inputs)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()return correct / totaldef loss_supervised(model, labeled_inputs, labels, **kwargs):outputs = model(labeled_inputs)labeled_loss = kwargs['criterion'](outputs, labels)return labeled_loss, {'labeled_loss': labeled_loss.item()}def loss_entropy(model, labeled_inputs, labels, unlabeled_inputs, **kwargs):outputs_labeled = model(labeled_inputs)labeled_loss = kwargs['criterion'](outputs_labeled, labels)outputs_unlabeled = model(unlabeled_inputs)ent_loss = entropy_loss(outputs_unlabeled)total_loss = labeled_loss + kwargs['alpha'] * ent_lossreturn total_loss, {'labeled_loss': labeled_loss.item(),'entropy_loss': ent_loss.item()}def loss_pseudo(model, labeled_inputs, labels, unlabeled_inputs, **kwargs):outputs_labeled = model(labeled_inputs)labeled_loss = kwargs['criterion'](outputs_labeled, labels)outputs_unlabeled = model(unlabeled_inputs)unlabeled_probs = torch.softmax(outputs_unlabeled, dim=1)max_probs, pseudo_labels = torch.max(unlabeled_probs, dim=1)mask = max_probs.ge(kwargs['confidence_threshold'])if mask.sum() > 0:pl_loss = kwargs['criterion'](outputs_unlabeled[mask], pseudo_labels[mask])else:pl_loss = torch.tensor(0.0).to(device)total_loss = labeled_loss + kwargs['alpha'] * pl_lossreturn total_loss, {'labeled_loss': labeled_loss.item(),'pseudo_loss': pl_loss.item() if mask.sum() > 0 else 0.0,'pseudo_ratio': mask.sum().item() / unlabeled_inputs.size(0)}def loss_pseudo_entropy(model, labeled_inputs, labels, unlabeled_inputs, **kwargs):outputs_labeled = model(labeled_inputs)labeled_loss = kwargs['criterion'](outputs_labeled, labels)outputs_unlabeled = model(unlabeled_inputs)unlabeled_probs = torch.softmax(outputs_unlabeled, dim=1)max_probs, pseudo_labels = torch.max(unlabeled_probs, dim=1)mask = max_probs.ge(kwargs['confidence_threshold'])if mask.sum() > 0:pl_loss = kwargs['criterion'](outputs_unlabeled[mask], pseudo_labels[mask])else:pl_loss = torch.tensor(0.0).to(device)ent_loss = entropy_loss(outputs_unlabeled)total_loss = labeled_loss + kwargs['alpha'] * (pl_loss + ent_loss)return total_loss, {'labeled_loss': labeled_loss.item(),'pseudo_loss': pl_loss.item() if mask.sum() > 0 else 0.0,'entropy_loss': ent_loss.item(),'pseudo_ratio': mask.sum().item() / unlabeled_inputs.size(0)}def loss_inform_max(model, labeled_inputs, labels, unlabeled_inputs, **kwargs):outputs_labeled = model(labeled_inputs)labeled_loss = kwargs['criterion'](outputs_labeled, labels)outputs_unlabeled = model(unlabeled_inputs)im_loss = inform_max_loss(outputs_unlabeled, lambda_et=kwargs['lambda_et'], lambda_div=kwargs['lambda_div'])total_loss = labeled_loss + im_lossreturn total_loss, {'labeled_loss': labeled_loss.item(),'inform_max_loss': im_loss.item()}def train(model, optimizer, criterion, train_loaders, test_loader, epochs, loss_function, **loss_kwargs):history = {'labeled_loss': [], 'entropy_loss': [], 'pseudo_loss': [], 'inform_max_loss': [], 'total_loss': [], 'accuracy': [], 'pseudo_ratio': []}labeled_loader = train_loaders['labeled']unlabeled_loader = train_loaders['unlabeled']for epoch in range(epochs):model.train()epoch_metrics = {k: 0.0 for k in history.keys() if k != 'accuracy'}epoch_counts = {'labeled': 0, 'unlabeled': 0}# 为监督学习方法创建虚拟无标签数据迭代器if unlabeled_loader is None:unlabeled_iter = iter([])else:unlabeled_iter = iter(unlabeled_loader)for batch_idx, (labeled_inputs, labels) in enumerate(labeled_loader):labeled_inputs, labels = labeled_inputs.to(device), labels.to(device)batch_size = labeled_inputs.size(0)epoch_counts['labeled'] += batch_sizeunlabeled_inputs = Nonetry:unlabeled_data, _ = next(unlabeled_iter)unlabeled_inputs = unlabeled_data.to(device)epoch_counts['unlabeled'] += unlabeled_inputs.size(0)except StopIteration:if unlabeled_loader is not None:unlabeled_iter = iter(unlabeled_loader)unlabeled_data, _ = next(unlabeled_iter)unlabeled_inputs = unlabeled_data.to(device)epoch_counts['unlabeled'] += unlabeled_inputs.size(0)optimizer.zero_grad()loss_args = {'model': model, 'labeled_inputs': labeled_inputs, 'labels': labels, 'criterion': criterion, **loss_kwargs}if unlabeled_inputs is not None:loss_args['unlabeled_inputs'] = unlabeled_inputstotal_loss, loss_metrics = loss_function(**loss_args)total_loss.backward()optimizer.step()# 累计指标for key in loss_metrics:if key in epoch_metrics:if key == 'pseudo_ratio':epoch_metrics[key] += loss_metrics[key] * batch_sizeelse:epoch_metrics[key] += loss_metrics[key] * batch_sizeepoch_metrics['total_loss'] += total_loss.item() * batch_size# 计算平均指标for key in epoch_metrics:if key == 'pseudo_ratio':history[key].append(epoch_metrics[key] / epoch_counts['labeled'])else:history[key].append(epoch_metrics[key] / epoch_counts['labeled'])# 评估模型test_acc = evaluate(model, test_loader)history['accuracy'].append(test_acc)# 打印进度print(f"Epoch {epoch + 1}/{epochs}:", end=' ')for key, value in history.items():if key != 'accuracy' and value:print(f"{key}: {value[-1]:.4f}", end=' ')print(f"Test Acc: {test_acc:.2%}")return historydef Trainer(args):# datasettransform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])train_ds = torchvision.datasets.MNIST(root=args.data_path, train=True, download=args.download, transform=transform)labeled_train_ds, unlabeled_train_ds = create_semi_supervised_dataset(train_ds, args.labeled_ratio)test_ds = torchvision.datasets.MNIST(root=args.data_path, train=False, download=args.download, transform=transform)print(f'labeled train data: {len(labeled_train_ds)}, unlabeled train data: {len(unlabeled_train_ds)}, test data: {len(test_ds)}')# dataloaderlabeled_loader = DataLoader(labeled_train_ds, batch_size=args.bs, shuffle=True)if args.method == 'supervised':unlabeled_loader = Noneelse:unlabeled_loader = DataLoader(unlabeled_train_ds, batch_size=args.bs, shuffle=True)train_loaders = {'labeled': labeled_loader, 'unlabeled': unlabeled_loader}test_loader = DataLoader(test_ds, batch_size=args.bs, shuffle=False)# 选择损失函数loss_functions = {'supervised': loss_supervised, 'entropy': loss_entropy, 'pseudo': loss_pseudo, 'pseudo_entropy': loss_pseudo_entropy,'inform_max': loss_inform_max}loss_function = loss_functions[args.method]# 初始化模型model = CNN().to(device)# 选择优化器if args.optimizer == 'adam':optimizer = optim.Adam(model.parameters(), lr=args.lr)elif args.optimizer == 'sgd':optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)else:raise ValueError(f"未知优化器: {args.optimizer}")# 交叉熵if args.label_smooth:criterion = LabelSmoothingCrossEntropy().to(device)else:criterion = nn.CrossEntropyLoss().to(device)# 训练参数loss_kwargs = {'alpha': args.alpha, 'lambda_et': args.lambda_et, 'lambda_div': args.lambda_div, 'confidence_threshold': args.confidence_threshold}history = train(model, optimizer, criterion, train_loaders, test_loader, args.epochs, loss_function, **loss_kwargs)return historydef compare_methods(args):methods = ["supervised", "entropy", "pseudo", "pseudo_entropy", "inform_max"]results = {'best_acc': [], 'last_acc': [], 'final_loss': [], 'pseudo_ratio': []}histories = {}original_method = args.methodfor method in methods:print(f"\n训练方法: {method} method")args.method = methodhistory = Trainer(args)histories[method] = history# 收集结果results['last_acc'].append(history['accuracy'][-1]*100)results['best_acc'].append(max(history['accuracy'])*100)results['final_loss'].append(history['total_loss'][-1])results['pseudo_ratio'].append(history['pseudo_ratio'][-1] if 'pseudo_ratio' in history else 0.0)args.method = original_method# 可视化结果plt.rcParams['axes.unicode_minus'] = Falseplt.rcParams['font.family'] = 'serif'plt.rcParams['font.serif'] = 'Times New Roman'plt.rcParams['font.weight'] = 'normal'plt.rcParams['font.size'] = 10plt.figure(figsize=(14, 10))colors = ['red', 'black', 'blue', 'g', 'magenta']line_st = ['-', '--', '-.', ':', (0, (3, 9, 1, 9))]# 损失曲线比较plt.subplot(2, 2, 1)for i, method in enumerate(methods):plt.plot(histories[method]['total_loss'], color=colors[i], linestyle=line_st[i], label=method, linewidth=1.3)plt.title('Training Loss')plt.xlabel('Epoch')plt.ylabel('Loss')plt.legend()plt.grid(True)# 准确率plt.subplot(2, 2, 2)for i, method in enumerate(methods):plt.plot(histories[method]['accuracy'], color=colors[i], linestyle=line_st[i], label=method)plt.title('Test Accuracy')plt.xlabel('Epoch')plt.ylabel('Accuracy')plt.legend()plt.grid(True)# 绘制双柱状图plt.subplot(2, 2, 3)last_acc = results['last_acc']best_acc = results['best_acc']x = np.arange(len(methods))  # 标签位置width = 0.35  # 柱状图宽度bar1 = plt.bar(x - width / 2, last_acc, width, label='Last Acc')bar2 = plt.bar(x + width / 2, best_acc, width, label='Best Acc')plt.ylabel('Accuracy')plt.ylim(90, 100)plt.xticks(x, methods)plt.legend()# 添加数值标签def add_labels(bars):for bar in bars:height = bar.get_height()plt.text(bar.get_x() + bar.get_width() / 2, height, f'{height:.2f}',ha='center', va='bottom', fontsize=8)add_labels(bar1)add_labels(bar2)# 伪标签使用情况plt.subplot(2, 2, 4)pseudo_names = [methods[2], methods[3]]pseudo_ratios = [results['pseudo_ratio'][2], results['pseudo_ratio'][3]]plt.bar(pseudo_names, pseudo_ratios, color=[colors[2], colors[3]])plt.title('Pseudo Label Usage')plt.ylabel('Ratio')plt.ylim(0, 1)for i, v in enumerate(pseudo_ratios):plt.text(i, v + 0.02, f"{v:.2%}", ha='center')plt.tight_layout()plt.savefig('comparison_results.png', dpi=500)plt.show()if __name__ == "__main__":set_seed(2025)args = parse_args()if args.compare:compare_methods(args)else:print(f'方法:{args.method} method')history = Trainer(args)print(f"\nBest acc (test): {max(history['accuracy']):.2%}, Last acc (test): {history['accuracy'][-1]:.2%}")

在这里插入图片描述

结论

  • 观察发现,一般标签平滑LabelSmoothingCrossEntropyCrossEntropy的效果有一定的提升。
  • 对比五种方法,联合伪标签+熵最小化效果有微弱的提升,其余方法对比纯监督方法没有竞争力。
  • 本案例没有任何调参,直接采用随机或者默认的参数,实际中可以采用学习率退火变权重等技巧,可能会涨点。

最后,上述源代码第一版是由deepseek生成,本人做了部分修改。因此,代码仅供参考。

http://www.xdnf.cn/news/13122.html

相关文章:

  • 使用 VSCode 开发 FastAPI 项目(1)
  • 从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
  • 云打包生成的ipa上传构建版本经验分享
  • 游戏测试面试八股汇总(持续更新版)
  • dbeaver 查询clickhouse,数据库时间差了8小时
  • UDP(Echoserver)
  • linux之kylin系统nginx的安装
  • 第二部分-IP及子网划分
  • BERT 位置嵌入机制与代码解析
  • Ubuntu 24.04 LTS 长期支持版发布:对服务器用户意味着什么?新特性、升级建议与性能影响初探
  • AWS S3 SDK FOR JAVA 基本使用及如何兼容七牛云
  • [Java基础] stream流中Collectors.toMap报空指针异常情况
  • CppCon 2015 学习:Time Programming Fundamentals
  • Shooter–System Performance Variability as a Function of Recoil Dynamics
  • 一般视频剪辑的硬盘配置是什么
  • AUTOSAR图解==>AUTOSAR_AP_RS_General
  • 卷积核、FIR滤波器与LTI系统——一回事
  • 高斯列主元消去法——python实现
  • Android Jetpack 系列(三) Lifecycle 生命周期感知组件详解
  • cacert.pem根证书文件
  • PydanticAI 作为 MCP 客户端示例
  • RK3568/RK3588 KVM系统虚拟化解决方案
  • WPS2024 软件下载及安装教程!
  • 关于纯java代码项目,打包jar实现方式
  • Python 训练营打卡 Day 47
  • 免布线+双向通信——电力载波技术重塑楼宇自控能效管理
  • 自建CA并生成自签名SSL证书
  • Cell的复用及自定义Cell
  • STM32嵌套向量中断控制器(NVIC)及外部中断使用案例分析
  • GAMES202-高质量实时渲染(Assignment 4)