当前位置: 首页 > ops >正文

力扣题解106:从中序与后序遍历序列构造二叉树

一、题目内容

题目要求根据二叉树的中序遍历序列和后序遍历序列来重建二叉树。具体来说,我们需要利用中序遍历序列和后序遍历序列的特点,通过递归的方法逐步构建出完整的二叉树。

中序遍历序列的特点是:左子树 -> 根节点 -> 右子树。后序遍历序列的特点是:左子树 -> 右子树 -> 根节点。因此,后序遍历的最后一个元素一定是根节点。通过这个根节点,我们可以在中序遍历序列中找到左子树和右子树的分界点,从而递归地构建左右子树。

我们需要声明一些变量来记录当前的遍历范围和递归的状态。在递归过程中,我们需要不断更新这些变量的值,以确保正确地构建每个子树。

二、题目分析

输入和输出

输入:

  • 两个整数数组 inorderpostorder

    • inorder:二叉树的中序遍历序列。

    • postorder:二叉树的后序遍历序列。

输出:

  • 构建好的二叉树的根节点(TreeNode 类型)。

递归函数 traversal 的逻辑

参数:

  • inorder:当前子树的中序遍历序列。

  • postorder:当前子树的后序遍历序列。

逻辑:

  1. 如果 postorder 为空,说明当前子树为空,返回 NULL

  2. 获取当前子树的根节点值 rootvalue,即 postorder 的最后一个元素。

  3. 创建根节点 root,值为 rootvalue

  4. 如果 postorder 只有一个元素,说明当前子树只有一个节点,直接返回 root

  5. 在中序遍历中找到根节点的位置 mid

  6. 根据 mid,将中序遍历序列划分为左子树和右子树。

  7. 根据左子树的大小,将后序遍历序列划分为左子树和右子树。

  8. 递归构建左子树和右子树。

  9. 返回根节点 root

三、代码解答

1. C++代码

class Solution {
public:// 主函数,用于调用递归函数并返回结果TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (postorder.empty() || inorder.empty()) return NULL;return traversal(inorder, postorder);}private:// 辅助递归函数TreeNode* traversal(vector<int>& inorder, vector<int>& postorder) {// 如果 postorder 为空,说明当前子树为空if (postorder.empty()) return NULL;// 获取当前子树的根节点值int rootvalue = postorder.back();TreeNode* root = new TreeNode(rootvalue);// 如果 postorder 只有一个元素,说明当前子树只有一个节点if (postorder.size() == 1) return root;// 在中序遍历中找到根节点的位置auto it = find(inorder.begin(), inorder.end(), rootvalue);int mid = distance(inorder.begin(), it);// 根据 mid,将中序遍历序列划分为左子树和右子树vector<int> leftInorder(inorder.begin(), inorder.begin() + mid);vector<int> rightInorder(inorder.begin() + mid + 1, inorder.end());// 根据左子树的大小,将后序遍历序列划分为左子树和右子树postorder.pop_back(); // 移除当前根节点vector<int> leftpostorder(postorder.begin(), postorder.begin() + leftInorder.size());vector<int> rightpostorder(postorder.begin() + leftInorder.size(), postorder.end());// 递归构建左子树和右子树root->left = traversal(leftInorder, leftpostorder);root->right = traversal(rightInorder, rightpostorder);return root;}
};

详细注释

成员变量

  • TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder):主函数,用于调用递归函数并返回结果。

  • TreeNode* traversal(vector<int>& inorder, vector<int>& postorder):辅助递归函数,用于构建当前子树。

辅助递归函数 traversal

TreeNode* traversal(vector<int>& inorder, vector<int>& postorder) {// 如果 postorder 为空,说明当前子树为空if (postorder.empty()) return NULL;// 获取当前子树的根节点值int rootvalue = postorder.back();TreeNode* root = new TreeNode(rootvalue);// 如果 postorder 只有一个元素,说明当前子树只有一个节点if (postorder.size() == 1) return root;// 在中序遍历中找到根节点的位置auto it = find(inorder.begin(), inorder.end(), rootvalue);int mid = distance(inorder.begin(), it);// 根据 mid,将中序遍历序列划分为左子树和右子树vector<int> leftInorder(inorder.begin(), inorder.begin() + mid);vector<int> rightInorder(inorder.begin() + mid + 1, inorder.end());// 根据左子树的大小,将后序遍历序列划分为左子树和右子树postorder.pop_back(); // 移除当前根节点vector<int> leftpostorder(postorder.begin(), postorder.begin() + leftInorder.size());vector<int> rightpostorder(postorder.begin() + leftInorder.size(), postorder.end());// 递归构建左子树和右子树root->left = traversal(leftInorder, leftpostorder);root->right = traversal(rightInorder, rightpostorder);return root;
}
  • 空子树检查: 如果 postorder 为空,说明当前子树为空,返回 NULL

  • 获取根节点值: 从后序遍历中获取当前子树的根节点值 rootvalue,即 postorder.back()

  • 创建根节点: 创建根节点 root,值为 rootvalue

  • 单节点子树检查: 如果 postorder 只有一个元素,说明当前子树只有一个节点,直接返回 root

  • 找到根节点在中序遍历中的位置: 在中序遍历中找到根节点的位置 mid

  • 划分中序遍历序列: 根据 mid,将中序遍历序列划分为左子树和右子树。

  • 划分后序遍历序列: 根据左子树的大小,将后序遍历序列划分为左子树和右子树。

  • 递归构建左子树和右子树: 递归调用 traversal 函数构建左子树和右子树。

  • 返回根节点: 返回构建好的根节点 root

主函数 buildTree

TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {if (postorder.empty() || inorder.empty()) return NULL;return traversal(inorder, postorder);
}
  • 调用递归函数: 从根节点开始,调用 traversal 函数,传入整个中序遍历和后序遍历的序列。

  • 返回结果: 返回构建好的二叉树的根节点。

回溯和递归的详细解释

递归

递归是一种函数调用自身的方法,用于解决复杂问题。在本题中,递归用于逐步构建二叉树的每个子树。

每次递归调用时,我们通过后序遍历的最后一个元素确定当前子树的根节点,并在中序遍历中找到该根节点的位置,从而确定左子树和右子树的范围。

递归调用的终止条件是当前子树为空(postorder.empty())。

回溯

回溯是一种在递归调用返回后恢复状态的机制。

在本题中,每次递归调用返回后,我们通过更新 postorder 和边界索引,恢复到当前子树的状态。这样可以确保每次递归返回后,状态正确,不会影响后续的递归调用。

示例

假设中序遍历序列 inorder = [4, 2, 5, 1, 6, 3, 7],后序遍历序列 postorder = [4, 5, 2, 6, 7, 3, 1]

http://www.xdnf.cn/news/10403.html

相关文章:

  • esp-idf ubuntu环境配置
  • C++多重继承详解与实战解析
  • C++ —— STL容器——string类
  • xdma 驱动测试与分析
  • Launcher3体系化之路
  • Spring Boot对一些技术框架进行了统一版本号管理
  • vue3常用组件有哪些
  • 【STM32F1标准库】理论——外部中断
  • YOLOv5 环境配置指南
  • 高速串行通信解惑说明
  • 数据结构-排序-排序的七种算法(2)
  • Java流【全】
  • vscode + cmake + ninja+ gcc 搭建MCU开发环境
  • 6v6-导航收录:2025年网站自动引流终极方案 - 提升SEO排名新策略
  • PCIe—TS1/TS2 之Polling.Active(一)
  • Java异步编程:CompletionStage接口详解
  • rv1126b sdk移植
  • QT中更新或添加组件时出现“”qt操作至少需要一个处于启用状态的有效资料档案库“解决方法”
  • 深入理解设计模式之观察者模式
  • 59、干系人概述
  • Windows系统时间怎么设置
  • Centos7 中Gunicorn的安装配置
  • Docker 在云环境中的部署:AWS/ECS 与 Azure/AKS 的实践对比
  • 自动驾驶系统研发系列—激光雷达感知延迟:自动驾驶安全的隐形隐患?
  • opencv使用经典bug
  • OD 算法题 B卷【文件目录大小】
  • 基于ssm+mysql的大创项目申报管理系统(含LW+PPT+源码+系统演示视频+安装说明)
  • 历年中山大学计算机保研上机真题
  • java swing 晃动鼠标改变背景颜色
  • PySide6 GUI 学习笔记——常用类及控件使用方法(标签控件QLabel)