当前位置: 首页 > java >正文

UOJ 164【清华集训2015】V Solution

Description

给定序列 a = ( a 1 , a 2 , ⋯ , a n ) a=(a_1,a_2,\cdots,a_n) a=(a1,a2,,an),另有序列 h h h,初始时 h = a h=a h=a.
m m m 个操作分五种:

  • add ⁡ ( l , r , v ) \operatorname{add}(l,r,v) add(l,r,v):对每个 i ∈ [ l , r ] i\in[l,r] i[l,r] 执行 a i ← a i + v a_i\gets a_i+v aiai+v.
  • subtract ⁡ ( l , r , v ) \operatorname{subtract}(l,r,v) subtract(l,r,v):对每个 i ∈ [ l , r ] i\in[l,r] i[l,r] 执行 a i ← max ⁡ ( 0 , a i − v ) a_i\gets \max(0, a_i-v) aimax(0,aiv).
  • assign ⁡ ( l , r , v ) \operatorname{assign}(l,r,v) assign(l,r,v):对每个 i ∈ [ l , r ] i\in[l,r] i[l,r] 执行 a i ← v a_i\gets v aiv.
  • get ⁡ ( i ) \operatorname{get}(i) get(i):求 a i a_i ai.
  • geth ⁡ ( i ) \operatorname{geth}(i) geth(i):求 h i h_i hi.

每次修改后,对每个 i ∈ [ 1 , n ] i\in[1,n] i[1,n] 执行 h i ← max ⁡ ( h i , a i ) h_i\gets \max(h_i,a_i) himax(hi,ai).

Limitations

1 ≤ n , m ≤ 5 × 1 0 5 1\le n,m\le 5\times 10^5 1n,m5×105
0 ≤ a i , v ≤ 1 0 9 0\le a_i,v\le 10^9 0ai,v109
1 ≤ l , r , i ≤ n 1\le l,r,i\le n 1l,r,in
2 s , 128 MB 2\text{s},128\text{MB} 2s,128MB

Solution

显然使用线段树.
由于带有 chmax ⁡ \operatorname{chmax} chmax,每个节点维护标记 ( k , b ) (k,b) (k,b) 表示 x x x 变为 max ⁡ ( x + k , b ) \max(x+k,b) max(x+k,b).
那么三种修改可以如下表示:

  • add ⁡ \operatorname{add} add 操作: ( v , − ∞ ) (v,-\infty) (v,).
  • subtract ⁡ \operatorname{subtract} subtract 操作: ( − v , 0 ) (-v,0) (v,0).
  • assign ⁡ \operatorname{assign} assign 操作: ( − ∞ , v ) (-\infty,v) (,v).

由于需要求 h i h_i hi,还需要维护历史值的标记 ( hk , hb ) (\textit{hk},\textit{hb}) (hk,hb).
考虑合并,画出图像(我画不好不献丑了),可得:

  • ( k 0 , b 0 ) + ( k 1 , b 1 ) = ( k 0 + k 1 , max ⁡ ( b 0 + k 1 , b 1 ) ) (k_0,b_0)+(k_1,b_1)=(k_0+k_1,\max(b_0+k_1,b_1)) (k0,b0)+(k1,b1)=(k0+k1,max(b0+k1,b1)).
  • ( hk 0 , hb 0 ) + ( hk 1 , hb 1 ) = ( max ⁡ ( hk 0 , k 0 + hk 1 ) , max ⁡ ( hb 0 , hb 1 , b 0 + hk 1 ) ) (\textit{hk}_0,\textit{hb}_0)+(\textit{hk}_1,\textit{hb}_1)=(\max(\textit{hk}_0,k_0+\textit{hk}_1),\max(\textit{hb}_0,\textit{hb}_1,b_0+\textit{hk}_1)) (hk0,hb0)+(hk1,hb1)=(max(hk0,k0+hk1),max(hb0,hb1,b0+hk1)).

查询时直接取出点 i i i 的标记,计算即可.
注意幺元 e = ( 0 , − ∞ ) e=(0,-\infty) e=(0,),合并 k k k 时需要和 − ∞ -\infty max ⁡ \max max,以及开 long long.

Code

3 KB , 2.93 s , 45.11 MB (in total, C++ 20) 3\text{KB},2.93\text{s},45.11\text{MB}\;\texttt{(in total, C++ 20)} 3KB,2.93s,45.11MB(in total, C++ 20)

#include <bits/stdc++.h>
using namespace std;using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;template<class T>
bool chmax(T &a, const T &b){if(a < b){ a = b; return true; }return false;
}template<class T>
bool chmin(T &a, const T &b){if(a > b){ a = b; return true; }return false;
}constexpr i64 inf = 2e18;
namespace seg_tree {struct Tag {i64 hk, hb, k, b;inline Tag() : hk(0), hb(-inf), k(0), b(-inf) {}inline Tag(i64 _hk, i64 _hb, i64 _k, i64 _b) : hk(_hk), hb(_hb), k(_k), b(_b) {}inline void apply(const Tag& t) {hk = max(hk, k + t.hk);hb = max(hb, max(b + t.hk, t.hb));k = max(k + t.k, -inf);b = max(b + t.k, t.b);}inline i64 f(i64 x) { return max(k + x, b); }inline i64 g(i64 x) { return max(hk + x, hb); }};struct Node {int l, r;Tag tag;};inline int ls(int u) { return 2 * u + 1; }inline int rs(int u) { return 2 * u + 2; }struct SegTree {vector<Node> tr;inline SegTree() {}inline SegTree(int n) : tr(n << 1) { build(0, 0, n - 1); }inline void pushdown(int u, int mid) {tr[ls(mid)].tag.apply(tr[u].tag);tr[rs(mid)].tag.apply(tr[u].tag);tr[u].tag = Tag();}inline void build(int u, int l, int r) {tr[u].l = l, tr[u].r = r, tr[u].tag = Tag();if (l == r) return;const int mid = (l + r) >> 1;build(ls(mid), l, mid), build(rs(mid), mid + 1, r);}inline void update(int u, int l, int r, i64 k, i64 b) {if (l <= tr[u].l && tr[u].r <= r) return tr[u].tag.apply(Tag(k, b, k, b));const int mid = (tr[u].l + tr[u].r) >> 1;pushdown(u, mid);if (l <= mid) update(ls(mid), l, r, k, b);if (r > mid) update(rs(mid), l, r, k, b);}inline Tag get(int u, int p) {if (tr[u].l == tr[u].r) return tr[u].tag;const int mid = (tr[u].l + tr[u].r) >> 1;pushdown(u, mid);if (p <= mid) return get(ls(mid), p);else return get(rs(mid), p);}inline void range_add(int l, int r, i64 x) { update(0, l, r, x, -inf); }inline void range_sub(int l, int r, i64 x) { update(0, l, r, -x, 0); }inline void range_assign(int l, int r, i64 x) { update(0, l, r, -inf, x); }inline Tag get(int p) { return get(0, p); }};
}
using seg_tree::SegTree;signed main() {ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);int n, m;scanf("%d %d", &n, &m);vector<i64> a(n);for (int i = 0; i < n; i++) scanf("%lld", &a[i]);SegTree sgt(n);for (int i = 0, op; i < m; i++) {scanf("%d", &op);if (op <= 3) {int l, r; i64 k;scanf("%d %d %lld", &l, &r, &k), l--, r--;if (op == 1) sgt.range_add(l, r, k);if (op == 2) sgt.range_sub(l, r, k);if (op == 3) sgt.range_assign(l, r, k);}else {int x; scanf("%d", &x), x--;auto tag = sgt.get(x);if (op == 4) printf("%lld\n", tag.f(a[x]));if (op == 5) printf("%lld\n", tag.g(a[x]));}}return 0;
}
http://www.xdnf.cn/news/5480.html

相关文章:

  • 【C语言】程序的预处理,#define详解
  • 用于文件上传的MultipartFile接口
  • Go语言实现优雅关机和重启的示例
  • 自然语言处理 (NLP) 入门:NLTK 与 SpaCy 的初体验
  • 『 测试 』测试基础
  • nanodet配置文件分析
  • 快速理解动态代理
  • 锚定基础与拥抱融合:C 语言在编程教育与技术社区的破圈之路
  • 长短期记忆网络(LSTM)深度解析:从理论到实践的全方位指南
  • 初探函数使用
  • L1 第9次课 数组进阶
  • 大数据从专家到小白
  • MCP 通信机制:stdio vs SSE
  • 项目过程中使用vant组件使用踩坑记录
  • 【Bootstrap V4系列】学习入门教程之 组件-媒体对象(Media object)
  • Nginx的增强与可视化!OpenResty Manager - 现代化UI+高性能反向代理+安全防护
  • 无人甘蔗小车履带式底盘行走系统的研究
  • 语音合成之十三 中文文本归一化在现代语音合成系统中的应用与实践
  • 【Java学习笔记】instanceof操作符
  • 隐式/显式类型转换?编程语言的类型转换?其它类型转换成数值类型?其它类型转换成字符串?类型转换?
  • 【和春笋一起学C++】数组名作为函数参数实例
  • STM32f103 标准库 零基础学习之按键点灯(不涉及中断)
  • vim配置代码文档格式化
  • Http2多路复用的静态表和动态表
  • CSS专题之自定义属性
  • 记录学习《手动学习深度学习》这本书的笔记(十一)
  • Docker:安装配置教程(最新版本)
  • 元组类型的特性与应用场景:深入理解元组在 TypeScript 中的使用
  • Python训练营打卡DAY22
  • LVGL(lv_label实战)