当前位置: 首页 > java >正文

nlp论文:分本分类:《Bag of Tricks for Efficient Text Classification》

文章目录

  • 一、论文和代码网址
  • 二、代码复现
    • 1.Linux系统下拉取代码、编译
    • 2.数据集:情感分析
    • 3.训练
    • 4.评估模型:用训练集评估模型精度
    • 5.测试
  • 三、代码结构
  • 四、模型架构
  • 五、fastText模型评价

一、论文和代码网址

论文:https://arxiv.org/pdf/1607.01759v2
代码:https://github.com/facebookresearch/fastText



二、代码复现

1.Linux系统下拉取代码、编译

wget https://github.com/facebookresearch/fastText/archive/v0.9.2.zip
unzip v0.9.2.zip
cd fastText-0.9.2
make

2.数据集:情感分析

IMDB 评论25000条:https://ai.stanford.edu/~amaas/data/sentiment/

假设我们要做情感分析任务,任务是根据电影评论判断情感是积极还是消极。那么我们可以准备如下格式的训练数据:

train.txt

__label__positive  This movie is fantastic, I loved it!
__label__negative  I hated this movie, it was awful.
__label__positive  Absolutely amazing, best movie I've seen!
__label__negative  Terrible, waste of time.
__label__positive  Great movie, will watch again.
__label__negative  Didn't enjoy it at all, very boring.

3.训练

修改epoch轮次

vim classification-example.sh

找到-epoch,从5改为20


训练模型命令:

./fasttext supervised -input train_25000.txt -output model./fasttext supervised -input train_25000.txt -output model -lr 0.01 -epoch 300 -dim 300 -neg 10 -loss hs【 loss 0.137】./fasttext supervised -input train_25000.txt -output model -lr 0.05 -epoch 50 -dim 300 -neg 30 -loss ns 【ns:很差】./fasttext supervised -input train_25000.txt -output model -lr 0.1 -epoch 50 -dim 300 -neg 30 -loss hs【 loss 0.111

最终输出:

Read 5M words
Number of words:  281111
Number of labels: 2
Progress: 100.0% words/sec/thread:  835193 lr:  0.000000 avg.loss:  0.137626 ETA:   0h 0m 0s

4.评估模型:用训练集评估模型精度

./fasttext test model.bin train.txt
./fasttext test model.bin train_25000.txt
./fasttext test model.bin test_label.txt
N	25000
P@1	0.996
R@1	0.996N	107
P@1	0.897
R@1	0.897

5.测试

test.txt

I loved this movie, it was fantastic!
The movie was very boring and predictable.
I didn't enjoy it at all, such a disappointment.

预测命令:

./fasttext predict-prob model.bin train_25000.txt

这将输出每行文本的预测标签。预测结果会以以下格式显示:

__label__positive 0.81732
__label__negative 0.698711
__label__positive 0.999979
__label__positive 0.862
__label__positive 0.999925
__label__positive 0.992208
__label__positive 0.999989
__label__positive 0.910747
__label__positive 0.848151
__label__negative 1.00001__label__positive 1.00001
__label__negative 0.832305
__label__positive 0.999992
__label__negative 0.973684
__label__positive 0.99999
__label__negative 0.965739



三、代码结构

C++辅以Python实现:

1.训练过程:fasttext.cc
(1)train()函数

void FastText::train(const Args& args, const TrainCallback& callback) {

2.模型:model.cc
模型计算与更新:model.cc 中主要处理 隐藏层计算、预测 和 模型参数更新 的过程。每次训练时都会通过 反向传播 来更新模型的 词向量。


3.损失函数:loss.cc
损失函数:loss.cc中实现了多种 损失函数(如负采样、层次化 softmax 和 标准softmax),每个损失函数都有自己的forward方法,负责计算损失并进行反向传播。



四、模型架构

在这里插入图片描述


五、fastText模型评价

1.工作原理
(1)词向量
通过词向量(Word Embeddings)的方式来表示每个词。将每个词拆分成了子词(subwords),利用n-gram技术,以更好地处理词形变化(复数形式、时态变化)和生僻词。

(2)线性分类器
fastText 使用一个线性分类器来进行文本分类任务。它会将文本中的所有词的向量表示(或子词的向量)平均起来,得到文本的向量表示,然后通过一个线性分类器(例如 logistic regression)来进行预测。
这种方法非常快速,尤其适合文本分类任务。

2.优势
没有复杂的神经网络,因此对于大规模文本,训练速度很快。

加速训练:
(1)Hierarchical Softmax
(2)负样本(Negative Samples):

负样本是随机从词汇表中选择的 不相关的词汇,这些词不与给定的中心词共同出现在同一上下文中。
例如,在训练 “cat” 的词向量时,负样本可能是从整个词汇表中随机选择的单词 “dog”、“apple”、“car” 等,这些词不与 “cat” 出现在同一上下文中。


3.缺陷
对于双重否定句,无法准确判断。


4.改进:
改用LSTM、GRU、Transformer、BERT等深度学习模型。含有自注意力机制的模型对中长语句的理解能力更强。能更好地处理文本中的长距离依赖上下文信息,捕捉到更丰富的句法和语义信息。

fastText太轻量级,以至于无法加入早停Dropout,采用的是负采样层次化softmax来训练词向量。

http://www.xdnf.cn/news/15482.html

相关文章:

  • Pytorch中张量的索引和切片使用详解和代码示例
  • [ROS 系列学习教程] ROS动作通讯(Action):通信模型、Hello World与拓展
  • B/S 架构通信原理详解
  • 【数据结构】单链表练习(有环)
  • C++(STL源码刨析/stack/queue/priority_queue)
  • Rocky Linux 9 源码包安装php8
  • I3C通信协议核心详解
  • 描述统计1
  • 百度移动开发面经合集
  • 【PCIe 总线及设备入门学习专栏 5.1.2 -- PCIe EP core_rst_n 与 app_rst_n】
  • Java 大视界 -- Java 大数据机器学习模型在金融风险传染路径分析与防控策略制定中的应用(347)
  • HTML网页结构(基础)
  • 使用Spring Cloud LoadBalancer报错java.lang.IllegalStateException
  • Nestjs框架: 数据库架构设计与 NestJS 多 ORM 动态数据库应用与连接池的配置
  • QTableView鼠标双击先触发单击信号
  • 项目进度与预算脱节,如何进行同步管理
  • 从0开始学习R语言--Day47--Nomogram
  • 多租户SaaS系统中设计安全便捷的跨租户流程共享
  • 文心一言开源版部署及多维度测评实例
  • 深度解析 AI 提示词工程(Prompt Engineering)
  • 【YOLOv11-目标检测】06-模型部署(C++)
  • 可微分3D高斯溅射(3DGS)在医学图像三维重建中的应用
  • gRPC实战指南:像国际快递一样调用跨语言服务 —— 解密Protocol Buffer与HTTP/2的完美结合
  • AI 增强大前端数据加密与隐私保护:技术实现与合规遵
  • 20250715武汉xx公司面试一面
  • Springboot儿童认知图文辅助系统6yhkv(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
  • React.FC与React.Component
  • 高并发四种IO模型的底层原理
  • [Dify]--进阶3-- 如何通过插件扩展 Dify 的功能能力
  • 深入浅出 RabbitMQ-核心概念介绍与容器化部署