当前位置: 首页 > ds >正文

【java实现+4种变体完整例子】排序算法中【希尔排序】的详细解析,包含基础实现、常见变体的完整代码示例,以及各变体的对比表格

以下是希尔排序的详细解析,包含基础实现、常见变体的完整代码示例,以及各变体的对比表格:
在这里插入图片描述


一、希尔排序基础实现

原理

希尔排序是插入排序的改进版本,通过分步缩小增量间隔,将数组分成多个子序列进行插入排序,逐步减少元素移动次数。

代码示例
public class ShellSort {void sort(int[] arr) {int n = arr.length;// 初始增量(希尔原始增量:n/2,每次除以2)for (int gap = n / 2; gap > 0; gap /= 2) {// 对每个子序列进行插入排序for (int i = gap; i < n; i++) {int temp = arr[i];int j;// 插入排序,步长为gapfor (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}}}
}
复杂度分析
  • 时间复杂度
    • 平均:O(n^(3/2))(希尔原始增量)。
    • 最坏:O(n²)(依赖增量序列)。
    • 最好:O(n log n)
  • 空间复杂度O(1)
  • 稳定性:不稳定(相同值的元素可能因交换顺序改变相对位置)。

二、常见变体及代码示例

1. Hibbard增量序列

改进点:增量序列选择 2^k - 1(如1、3、7、15…),减少子序列间的相关性。
适用场景:平均性能优于原始希尔增量。

public class HibbardShellSort {void sort(int[] arr) {int n = arr.length;// 生成Hibbard增量序列int gap = 1;while (gap < n / 2) {gap = 2 * gap + 1;}while (gap >= 1) {for (int i = gap; i < n; i++) {int temp = arr[i];int j;for (j = i; j >= gap && arr[j - gap] > temp; j -= gap) {arr[j] = arr[j - gap];}arr[j] = temp;}gap = (gap - 1) / 2; // 逆序应用增量}}
}
2. Sedgewick增量序列

改进点:增量序列按特定公式生成(如1, 5, 19, 41, 109…),优化时间复杂度。
适用场景:理论时间复杂度更低(接近 O(n^(4/3)))。

public class SedgewickShellSort {void sort(int[] arr) {int n = arr.length;// 生成Sedgewick增量序列List<Integer> gaps = new ArrayList<>();for (int h = 1; h < n; ) {gaps.add(h);if (h <= n / 3) h = 3 * h + 1;else h = 3 * (h / 2) + 1;}// 逆序应用增量for (int i = gaps.size() - 1; i >= 0; i--) {int gap = gaps.get(i);for (int j = gap; j < n; j++) {int temp = arr[j];int k;for (k = j; k >= gap && arr[k - gap] > temp; k -= gap) {arr[k] = arr[k - gap];}arr[k] = temp;}}}
}
3. 斐波那契增量序列

改进点:增量序列基于斐波那契数列(如1、1、2、3、5…),减少子序列相关性。
适用场景:理论上的优化尝试。

public class FibonacciShellSort {void sort(int[] arr) {int n = arr.length;// 生成斐波那契增量序列List<Integer> gaps = new ArrayList<>();int a = 0, b = 1;while (b < n) {gaps.add(b);int temp = a + b;a = b;b = temp;}// 逆序应用增量for (int i = gaps.size() - 1; i >= 0; i--) {int gap = gaps.get(i);for (int j = gap; j < n; j++) {int temp = arr[j];int k;for (k = j; k >= gap && arr[k - gap] > temp; k -= gap) {arr[k] = arr[k - gap];}arr[k] = temp;}}}
}

三、变体对比表格

变体名称增量序列时间复杂度空间复杂度稳定性主要特点适用场景
基础希尔排序(原始增量)n/2, n/4, ..., 1O(n^(3/2))(平均)
O(n²)(最坏)
O(1)不稳定简单易实现,但性能依赖增量选择通用场景,增量选择简单
Hibbard增量序列2^k -1(如1,3,7,15…)O(n^(3/2))(平均)O(1)不稳定减少子序列相关性,性能更优需要平衡性能与实现复杂度的场景
Sedgewick增量序列1,5,19,41,…O(n^(4/3))(理论最优)O(1)不稳定理论时间复杂度最低,适合大数据需要极致性能的场景
斐波那契增量序列斐波那契数列(如1,2,3…)O(n^(3/2))(平均)O(1)不稳定理论上的优化尝试,实际效果需验证研究或特定实验场景

四、关键选择原则

  1. 基础场景:优先使用基础希尔排序(原始增量),因其简单且性能足够。
  2. 性能优化
    • Hibbard增量:适合需要比原始增量更好的平均性能,且实现复杂度较低。
    • Sedgewick增量:适用于大数据场景,理论时间复杂度最低。
  3. 增量序列选择
    • 理论最优:Sedgewick增量。
    • 实现简单:Hibbard增量。
  4. 稳定性需求:所有变体均不稳定,若需稳定排序需选择其他算法(如归并排序)。
  5. 实验场景:斐波那契增量可用于探索不同增量序列的效果,但实际应用较少。

通过选择合适的增量序列,可在特定场景下显著提升希尔排序的效率。例如,Sedgewick增量在理论上的时间复杂度最低,适合大数据排序;而Hibbard增量则在实现复杂度与性能之间取得平衡。

http://www.xdnf.cn/news/420.html

相关文章:

  • Java 内存优化:如何避免内存泄漏?
  • 系分架构论文《论高并发场景的架构设计和开发方法》
  • REST 架构详解:从概念到应用的全面剖析
  • Vue3 + Three.js 场景编辑器开发实践
  • jangow靶机笔记(Vulnhub)
  • LeetCode 1365. 有多少小于当前数字的数字 java题解
  • phpy通用扩展:让PHP和Python手拉手
  • 基于SFC的windows修复程序,修复绝大部分系统损坏
  • 如何0基础学stm32?
  • 【操作系统原理01】操作系统引论
  • vue生命周期
  • 安徽合肥京东自营代运营如何突围?
  • 【网络技术_域名解析DNS】三、DNS 中间件实践应用与优化策略
  • Docker Swarm 容器与普通 Docker 容器的网卡差异
  • RTMP握手流程
  • 18、TimeDiff论文笔记
  • 用usb网卡 虚拟机无法开到全双工的解决办法
  • CUDA编程中影响正确性的小细节总结
  • mysql的函数(第一期)
  • [每周一更]-(第140期):sync.Pool 使用详解:性能优化的利器
  • 【漫话机器学习系列】211.驻点(Stationary Points)
  • opencv--图像处理
  • [密码学基础]GMT 0029-2014签名验签服务器技术规范深度解析
  • 性能比拼: Elixir vs Go(第二轮)
  • [密码学基础]密码学发展简史:从古典艺术到量子安全的演进
  • 免费多平台运行器,手机畅玩经典主机大作
  • 【数据结构】励志大厂版·初阶(复习+刷题)单链表
  • 简单线段树的讲解(一点点的心得体会)
  • 开发基于python的商品推荐系统,前端框架和后端框架的选择比较
  • 碰一碰发视频系统源码搭建全解析:定制化开发