LeetCode Hot 100 搜索旋转排序数组
整数数组 nums
按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums
在预先未知的某个下标 k
(0 <= k < nums.length
)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7]
在下标 3
处经旋转后可能变为 [4,5,6,7,0,1,2]
。
给你 旋转后 的数组 nums
和一个整数 target
,如果 nums
中存在这个目标值 target
,则返回它的下标,否则返回 -1
。
你必须设计一个时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [4,5,6,7,0,1,2]
, target = 0
输出:4
示例 2:
输入:nums = [4,5,6,7,0,1,2]
, target = 3
输出:-1
示例 3:
输入:nums = [1], target = 0 输出:-1
📖 文字题解
方法一:二分查找
思路和算法
对于有序数组,可以使用二分查找的方法查找元素。
但是这道题中,数组本身不是有序的,进行旋转后只保证了数组的局部是有序的,这还能进行二分查找吗?答案是可以的。
可以发现的是,我们将数组从中间分开成左右两部分的时候,一定有一部分的数组是有序的。拿示例来看,我们从 6
这个位置分开以后数组变成了 [4, 5, 6]
和 [7, 0, 1, 2]
两个部分,其中左边 [4, 5, 6]
这个部分的数组是有序的,其他也是如此。
这启示我们可以在常规二分查找的时候查看当前 mid
为分割位置分割出来的两个部分 [l, mid]
和 [mid + 1, r]
哪个部分是有序的,并根据有序的那个部分确定我们该如何改变二分查找的上下界,因为我们能够根据有序的那部分判断出 target
在不在这个部分:
- 如果
[l, mid - 1]
是有序数组,且target
的大小满足 [nums[l],nums[mid]),则我们应该将搜索范围缩小至[l, mid - 1]
,否则在[mid + 1, r]
中寻找。 - 如果
[mid, r]
是有序数组,且target
的大小满足 (nums[mid+1],nums[r]],则我们应该将搜索范围缩小至[mid + 1, r]
,否则在[l, mid - 1]
中寻找。
需要注意的是,二分的写法有很多种,所以在判断 target
大小与有序部分的关系的时候可能会出现细节上的差别。
class Solution {
public:int search(vector<int>& nums, int target) {int n = (int)nums.size();int left = 0, right = n-1;if(!n){return -1;}if(n == 1){return nums[0] == target ? 0 : -1;}while(left <= right){int mid = (right + left) /2;if(nums[mid] == target) return mid;if(nums[0] <= nums[mid]){if(nums[0] <= target && target < nums[mid]){right = mid - 1;}else{left = mid + 1;}}else{if(nums[mid] < target && target <= nums[n - 1]){left = mid + 1;} else{right = mid - 1;}}}return -1;}
};