当前位置: 首页 > ds >正文

AI 临床医学课题【总结】

最近参与了几个临床医学课题,总结一下如何跨界结合

1: 确定研究的方向: 这个是决定文章的核心

       研究方向的时候,就要确定要投的期刊,平时看论文的时候要把一些常用的术语记录下来,

       投的期刊,研究内容,方法记录一下。

2:  研究团队团队搭建(负责人:负责读论文,研究点 ,确定方案 

                                        程序员:负责代码实现)

3:  定期的项目推进,复盘

如下是遇到的问题,Research Gate 讨论交流过程

Study Summary 
This study aims to develop a machine learning model for personalized prediction of overall survival (OS) in lymphoma patients using retrospective data. The model incorporates input features such as survival time, treatment regimens, demographic characteristics, and laboratory test results to predict a binary outcome (alive vs. deceased). Once trained, the model is intended for clinical use, where patient-specific features (including dynamically adjusted survival time) are input to generate real-time survival probability estimates.  
Key Methodological Questions 
1. Modeling Approach 
   - Is using survival/death as a binary outcome while also including survival time as an input feature the optimal strategy?  
   - How should censored patients (e.g., lost to follow-up) be handled in this framework?  
2. Treatment-Related Features 
   - Can treatment-related variables (e.g., specific regimens) be legitimately included as predictive features for survival outcomes?  
   - Does this introduce confounding due to treatment selection bias?  
3. Overfitting Concerns in Small Sample Size  
   - With only 70 samples, an internal test set, and no external validation, how can we rigorously assess and mitigate overfitting?  
   - What strategies (e.g., feature selection, regularization, or alternative validation methods) would be most effective?  

Answer: 

Shafagat Mahmudova

  • PhD degree in Technical sciences, associate Professor
  • Head of Department at Institute of Information Technology

The development of cancer is a complex process that occurs when genetic and epigenetic changes accumulate in the deoxyribose nucleic acid (DNA) of a cell. This leads to uncontrolled cell growth and invasion, which can ultimately result in the formation of a tumor. To better understand this disease and improve patient outcomes, researchers have traditionally relied on statistical and computational methods to analyse large datasets containing genomic, proteomic, and clinical information. However, with the emergence of artificial intelligence (AI) and ML, scientists are now able to develop

http://www.xdnf.cn/news/15579.html

相关文章:

  • WIFI MTU含义 ,协商修改的过程案例分析
  • 《大数据技术原理与应用》实验报告三 熟悉HBase常用操作
  • 《大数据技术原理与应用》实验报告二 熟悉常用的HDFS操作
  • LeetCode|Day11|557. 反转字符串中的单词 III|Python刷题笔记
  • 理解:进程、线程、协程
  • autoware激光雷达和相机标定
  • 【ASP.NET Core】内存缓存(MemoryCache)原理、应用及常见问题解析
  • 2025 春秋杯夏季个人挑战赛 Web
  • 【解决办法】越疆Dobot CR5 桌面客户端DobotStudio Pro连不上机器人
  • docker简介
  • Java实现文件自动下载,XXL-Job定时任务中的HTTP文件下载最佳实践
  • lightgbm算法学习
  • Datawhale AI夏令营大模型 task2.1
  • ISO-IEC-IEEE 42010架构规范
  • 更改elementui 图标 css content
  • 详解从零开始实现循环神经网络(RNN)
  • 深浅拷贝以及函数缓存
  • Dubbo高阶难题:异步转同步调用链上全局透传参数的丢失问题
  • iOS App 安全加固全流程:静态 + 动态混淆对抗逆向攻击实录
  • iOS如何查看电池容量?理解系统限制与开发者级能耗调试方法
  • 内网环境自签名超长期HTTPS证书,并在Chrome中显示为安全证书
  • C#自定义控件
  • 【Python】基础语法
  • 单向链表、双向链表、栈、队列复习(7.14)
  • LSV负载均衡
  • Usage of standard library is restricted (arkts-limited-stdlib) <ArkTSCheck>
  • 防火墙技术概述
  • Java行为型模式---模板方法模式
  • 【html基本界面】
  • 【视频格式转换】.264格式转为mp4格式