当前位置: 首页 > ds >正文

【字节跳动】数据挖掘面试题0016:解释AUC的定义,它解决了什么问题,优缺点是什么,并说出工业界如何计算AUC。

文章大纲

      • AUC(Area Under the Curve)详解
        • 一、定义:AUC是什么?
        • 二、解决了什么问题?
        • 三、优缺点分析
        • 四、工业界大规模计算AUC的方法
          • 1. 标准计算(小数据)
          • 2. 工业级大规模计算方案
          • 3.工业界最佳实践
          • 4.工业界方案选型建议
      • 总结:AUC的本质

在这里插入图片描述

AUC(Area Under the Curve)详解

一、定义:AUC是什么?
  • AUC是ROC曲线下的面积用于衡量二分类模型性能的核心指标

  • AUC的物理意义

    • “随机抽一个正样本和一个负样本,正样本得分高于负样本的概率” —— 这正是工业界关注排序能力的本质原因。
  • 通俗解释

    想象两个袋子:

    • 袋A:全是好苹果(正样本)
    • 袋B:全是坏苹果(负样本)

    你有一个苹果检测器(分类模型):

    1. 随机从A袋拿一个好苹果
    2. 随机从B袋拿一个坏苹果
    3. 让检测器判断哪个是好苹果

    AUC = 检测器做出正确判断的概率

    • AUC=1:每次都正确
    • AUC=0.5:和瞎猜一样
    • AUC<0.5:还不如瞎猜

技术定义
A U C = P ( 正样本得分 > 负样本得分 ) AUC = P(\text{正样本得分} > \text{负样本得分}) AUC=P(正样本得分>负样本得分)
其中得分是 模型预测的"正类概率"


二、解决了什么问题?
    1. 不平衡数据评估难题
    • 传统准确率在99%负样本的数据中失效(全预测负类就有99%准确率)
    • AUC不受样本分布影响
    1. 分类阈值选择问题
    • 不需要预先设定分类阈值(如0.5)
    • 评估模型在所有阈值下的综合表现
    1. 模型排序能力评估
    • 直接衡量"把正样本排在负样本前面"的能力
    • 这对 推荐系统/风控 等场景至关重要

三、优缺点分析
优点缺点
不受类别分布影响无法反映具体错误代价
直观的概率解释对类别概率校准不敏感
评估模型整体排序能力计算复杂度较高
广泛适用于不同场景无法区分不同"错误类型"(如FP/FN)
与业务目标高度相关对预测分数尺度不敏感
  • 特殊注意
    • AUC高 ≠ 模型有用: 当负样本极易区分时(如身高判断性别),AUC虚高
    • AUC低一定差:低于0.5说明模型存在根本缺陷

四、工业界大规模计算AUC的方法
1. 标准计算(小数据)
from sklearn.metrics import roc_auc_scoreauc = roc_auc_score(y_true, y_pred)

局限:需加载全量数据到内存,100亿数据直接崩溃

2. 工业级大规模计算方案
  • 方案一:分桶近似法(最常用,Bucket Approximation,按分数段统计胜场(近似))

    • 适用场景超大数据集(百亿级)、需平衡精度与速度
      • 桶数量决定精度(工业界常用10万-100万桶
    • 核心思想: 将预测概率分桶 → 统计桶内正负样本数 → 用梯形面积累加近似AUC。
      在这里插入图片描述
    def approximate_auc(y_true, y_pred, n_buckets=10000):# 将预测分数分桶buckets = np.linspace(0, 1, n_buckets)bucket_stats = np.zeros((n_buckets, 2))  # [正样本数, 负样本数]# 分布式统计每个桶的正负样本数for i in range(len(y_pred)):bucket_idx = np.searchsorted(buckets, y_pred[i])if y_true[i] == 1:bucket_stats[bucket_idx, 0] += 1else:bucket_stats[bucket_idx, 1] += 1# 计算AUC(梯形面积法)auc = 
http://www.xdnf.cn/news/15324.html

相关文章:

  • UE5多人MOBA+GAS 18、用对象池来设置小兵的队伍的生成,为小兵设置一个目标从己方出生点攻打对方出生点,优化小兵的血条UI
  • (补充)RS422
  • 【每日刷题】x 的平方根
  • 2D下的几何变换(C#实现,持续更新)
  • Elasticsearch混合搜索深度解析(下):执行机制与完整流程
  • 【AI News | 20250710】每日AI进展
  • 2025年DevSecOps工具全景图:安全左移时代的国产化突围
  • 深入探索Kafka Streams:企业级实时数据处理实践指南
  • 11. TCP 滑动窗口、拥塞控制是什么,有什么区别
  • 8-day06预训练模型
  • 揭示张量分析的强大力量:高级研究的基础-AI云计算拓展核心内容
  • Django老年健康问诊系统 计算机毕业设计源码32407
  • 从就绪到终止:操作系统进程状态转换指南
  • 将手工建模模型(fbx、obj)转换为3dtiles的免费工具!
  • 上半年净利预增66%-97%,高增长的赛力斯该咋看?
  • 聊一聊在 Spring Boot 项目中自定义 Validation 注解
  • 牛客小白月赛119
  • 进程状态 + 进程优先级切换调度-进程概念(5)
  • 【C++篇】二叉树进阶(上篇):二叉搜索树
  • Qt中QGraphicsView类应用解析:构建高效2D图形界面的核心技术
  • 数据结构-顺序表
  • 【C语言网络编程】HTTP 客户端请求(域名解析过程)
  • Oracle字符类型详解:VARCHAR、VARCHAR2与CHAR的区别
  • Qt数据库编程详解:SQLite实战指南
  • 解决Linux绑定失败地址已使用(端口被占用)的问题
  • 设计仿真 | MSC Apex Simufact实现铁路铰链轻量化与高精度增材制造
  • 在 Spring Boot 中优化长轮询(Long Polling)连接频繁建立销毁问题
  • MySQL:分析表锁的常见问题
  • JavaScript加强篇——第四章 日期对象与DOM节点(基础)
  • P9755 [CSP-S 2023] 种树