当前位置: 首页 > backend >正文

AI模拟清明上河图

AI模拟清明上河图

引言: 我们知道清明上河图是我国国画的代表作之一,是中国十大传世名画之一。为北宋风俗画,北宋画家张择端仅见的存世精品,属国宝级文物,现藏于北京故宫博物院。
清明上河图宽24.8厘米、长528.7厘米 ,绢本设色。作品以长卷形式,采用散点透视构图法,生动记录了中国十二世纪北宋都城东京(又称汴京,今河南开封)的城市面貌和当时社会各阶层人民的生活状况,是北宋时期都城汴京当年繁荣的见证,也是北宋城市经济情况的写照。
这在中国乃至世界绘画史上都是独一无二的。在五米多长的画卷里,共绘了数量庞大的各色人物,牛、骡、驴等牲畜,车、轿、大小船只,房屋、桥梁、城楼等各有特色,体现了宋代建筑的特征。具有很高的历史价值和艺术价值。 《清明上河图》虽然场面热闹,但表现的并非繁荣市景,而是一幅带有忧患意识的"盛世危图",官兵懒散税务重。
在这里插入图片描述

而我们今天的项目就是通过对算法的改造,实现属于自己的清明上河图。
下面我们将利用vgg19模型训练画作,详细步骤如下,并且我在每个代码上面都注释了方便查看:
首先我们导入先关的库:

import tensorflow as tf
import numpy as np
import scipy.io
import scipy.misc
import os
import time

接着定义一些变量方便调用:

CONTENT_IMG = '1.png'
STYLE_IMG = 'sty.jpg'
OUTPUT_DIR = 'neural_style_transfer_tensorflow/'

再创建一个目录用来保存图片:

if not os.path.exists(OUTPUT_DIR):os.mkdir(OUTPUT_DIR)

定义生成图像的长宽通道等信息

IMAGE_W = 400
IMAGE_H = 300
COLOR_C = 3NOISE_RATIO = 0.7
BETA = 5
ALPHA = 100

再接着定义模型路径

VGG_MODEL = 'imagenet-vgg-verydeep-19.mat'

生成一个参数矩阵,作为图像的处理过程之一,对像素值运算:

MEAN_VALUES = np.array([123.68, 116.779, 103.939]).reshape((1, 1, 1, 3))

再接着定义读取模型函数,下面我都有所注解:

def load_vgg_model(path):'''Details of the VGG19 model:- 0 is conv1_1 (3, 3, 3, 64)- 1 is relu- 2 is conv1_2 (3, 3, 64, 64)- 3 is relu    - 4 is maxpool- 5 is conv2_1 (3, 3, 64, 128)- 6 is relu- 7 is conv2_2 (3, 3, 128, 128)- 8 is relu- 9 is maxpool- 10 is conv3_1 (3, 3, 128, 256)- 11 is relu- 12 is conv3_2 (3, 3, 256, 256)- 13 is relu- 14 is conv3_3 (3, 3, 256, 256)- 15 is relu- 16 is conv3_4 (3, 3, 256, 256)- 17 is relu- 18 is maxpool- 19 is conv4_1 (3, 3, 256, 512)- 20 is relu- 21 is conv4_2 (3, 3, 512, 512)- 22 is relu- 23 is conv4_3 (3, 3, 512, 512)- 24 is relu- 25 is conv4_4 (3, 3, 512, 512)- 26 is relu- 27 is maxpool- 28 is conv5_1 (3, 3, 512, 512)- 29 is relu- 30 is conv5_2 (3, 3, 512, 512)- 31 is relu- 32 is conv5_3 (3, 3, 512, 512)- 33 is relu- 34 is conv5_4 (3, 3, 512, 512)- 35 is relu- 36 is maxpool- 37 is fullyconnected (7, 7, 512, 4096)- 38 is relu- 39 is fullyconnected (1, 1, 4096, 4096)- 40 is relu- 41 is fullyconnected (1, 1, 4096, 1000)- 42 is softmax'''vgg = scipy.io.loadmat(path)vgg_layers = vgg['layers']
#加载vgg模型获取模型各层参数和名称def _weights(layer, expected_layer_name):W = vgg_layers[0][layer][0][0][2][0][0]b = vgg_layers[0][layer][0][0][2][0][1]layer_name = vgg_layers[0][layer][0][0][0][0]assert layer_name == expected_layer_namereturn W, b
#将加载的变量初始化成tf可运算的张量类型,函数返回值为激活函数的输出def _conv2d_relu(prev_layer, layer, layer_name):W, b = _weights(layer, layer_name)W = tf.constant(W)b = tf.constant(np.reshape(b, (b.size)))return tf.nn.relu(tf.nn.conv2d(prev_layer, filter=W, strides=[1, 1, 1, 1], padding='SAME') + b)
#定义池化层函数def _avgpool(prev_layer):return tf.nn.avg_pool(prev_layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#将各层输出值都放到列表中方便加载,形成字典graph = {}graph['input']    = tf.Variable(np.zeros((1, IMAGE_H, IMAGE_W, COLOR_C)), dtype='float32')#定义['conv1_1']为vgg模型的第0层,输入层为上一层的['input' ]graph['conv1_1']  = _conv2d_relu(graph['input'], 0, 'conv1_1')graph['conv1_2']  = _conv2d_relu(graph['conv1_1'], 2, 'conv1_2')graph['avgpool1'] = _avgpool(graph['conv1_2'])graph['conv2_1']  = _conv2d_relu(graph['avgpool1'], 5, 'conv2_1')graph['conv2_2']  = _conv2d_relu(graph['conv2_1'], 7, 'conv2_2')graph['avgpool2'] = _avgpool(graph['conv2_2'])graph['conv3_1']  = _conv2d_relu(graph['avgpool2'], 10, 'conv3_1')graph['conv3_2']  = _conv2d_relu(graph['conv3_1'], 12, 'conv3_2')graph['conv3_3']  = _conv2d_relu(graph['conv3_2'], 14, 'conv3_3')graph['conv3_4']  = _conv2d_relu(graph['conv3_3'], 16, 'conv3_4')graph['avgpool3'] = _avgpool(graph['conv3_4'])graph['conv4_1']  = _conv2d_relu(graph['avgpool3'], 19, 'conv4_1')graph['conv4_2']  = _conv2d_relu(graph['conv4_1'], 21, 'conv4_2')graph['conv4_3']  = _conv2d_relu(graph['conv4_2'], 23, 'conv4_3')graph['conv4_4']  = _conv2d_relu(graph['conv4_3'], 25, 'conv4_4')graph['avgpool4'] = _avgpool(graph['conv4_4'])graph['conv5_1']  = _conv2d_relu(graph['avgpool4'], 28, 'conv5_1')graph['conv5_2']  = _conv2d_relu(graph['conv5_1'], 30, 'conv5_2')graph['conv5_3']  = _conv2d_relu(graph['conv5_2'], 32, 'conv5_3')graph['conv5_4']  = _conv2d_relu(graph['conv5_3'], 34, 'conv5_4')graph['avgpool5'] = _avgpool(graph['conv5_4'])return graph

为了实现自己的项目效果,设定损失函数:

#定义内容损失函数,变量为tf计算图和vgg模型参数,返回值为损失值
def content_loss_func(sess, model):#p就是model['conv4_2'])参数,x是model['conv4_2'])def _content_loss(p, x):#p的值为Tensor("Relu_9:0", shape=(1, 75, 100, 512), dtype=float32),故N为512,M为75*100,分别为卷积核个数,卷积核大小的宽*100N = p.shape[3]M = p.shape[1] * p.shape[2]return (1 / (4 * N * M)) * tf.reduce_sum(tf.pow(x - p, 2))return _content_loss(sess.run(model['conv4_2']), model['conv4_2'])STYLE_LAYERS = [('conv1_1', 0.5), ('conv2_1', 1.0), ('conv3_1', 1.5), ('conv4_1', 3.0), ('conv5_1', 4.0)]
#返回值为_style_loss的值*0.5,1,1.5,4的加和
def style_loss_func(sess, model):def _gram_matrix(F, N, M):Ft = tf.reshape(F, (M, N))return tf.matmul(tf.transpose(Ft), Ft)#a,x都为'conv1_1', conv2_1', 'conv3_1', 'conv4_1','conv5_1'中的参数遍历def _style_loss(a, x):#同内容损失函数N = a.shape[3]M = a.shape[1] * a.shape[2]A = _gram_matrix(a, N, M)G = _gram_matrix(x, N, M)return (1 / (4 * N ** 2 * M ** 2)) * tf.reduce_sum(tf.pow(G - A, 2))return sum([_style_loss(sess.run(model[layer_name]), model[layer_name]) * w for layer_name, w in STYLE_LAYERS])

再定义生成图片,读取图片,保存图片函数:

#产生噪声图片
def generate_noise_image(content_image, noise_ratio=NOISE_RATIO):#随机产生矩阵图片,矩阵元素内容符合标准正太分布noise_image = np.random.uniform(-20, 20, (1, IMAGE_H, IMAGE_W, COLOR_C)).astype('float32')#将产生的矩阵内各元素与神经网络加和input_image = noise_image * noise_ratio + content_image * (1 - noise_ratio)return input_image
#读取图片,改变尺寸,变成1行多列矩阵,将矩阵与初始值相减返回
def load_image(path):image = scipy.misc.imread(path)image = scipy.misc.imresize(image, (IMAGE_H, IMAGE_W))#image.shape为[800,600,3],则(1, ) + image.shape)为[1,800,600,3]image = np.reshape(image, ((1, ) + image.shape))#MEAN_VALUES = np.array([123.68, 116.779, 103.939]).reshape((1, 1, 1, 3))#其中image为三通道矩阵,MEAN_VALUES为三维矩阵可以相减image = image - MEAN_VALUESreturn image
#保存图片
def save_image(path, image):image = image + MEAN_VALUES#参见上面图像加载时多加了1维,故形成时要减少维度,image = image[0]#截取所有数值在0-255之间的,因为像素值必须是这个范围。而参数运算后可能会超过这个值image = np.clip(image, 0, 255).astype('uint8')#保存scipy.misc.imsave(path, image)

下面是训练加载:

#启动计算图
with tf.Session() as sess:#读取图片,返回值为减去MEAN_VALUES的矩阵,矩阵形状为[1,800,600,3]content_image = load_image(CONTENT_IMG)style_image = load_image(STYLE_IMG)#加载vgg19模型,返回值为一个字典,里面为各网络层参数,输入和输出model = load_vgg_model(VGG_MODEL)#产生噪声图片,返回值为随机矩阵加上网络层参数的新矩阵input_image = generate_noise_image(content_image)#变量初始化sess.run(tf.global_variables_initializer())#从网络层input层开始运算内容图片矩阵sess.run(model['input'].assign(content_image))content_loss = content_loss_func(sess, model)# 从网络层input层开始运算内容图片矩阵sess.run(model['input'].assign(style_image))style_loss = style_loss_func(sess, model)#总损失为内容损失加上风格损失total_loss = BETA * content_loss + ALPHA * style_loss#建立优化器以调整参数optimizer = tf.train.AdamOptimizer(2.0)#优化器调整参数,使得损失为最小train = optimizer.minimize(total_loss)sess.run(tf.global_variables_initializer())# 从网络层input层开始运算形成新的图片sess.run(model['input'].assign(input_image))ITERATIONS = 2000#训练2000轮for i in range(ITERATIONS):sess.run(train)print('Iteration %d' % i)print('Cost: ', sess.run(total_loss))if i % 100 == 0:#每一百次加载一次网络参数以保存图片output_image = sess.run(model['input'])print('Iteration %d' % i)print('Cost: ', sess.run(total_loss))save_image(os.path.join(OUTPUT_DIR, 'output_%d.jpg' % i), output_image)

最终得到的效果如图所示:

左边是电视里找的图片,右边是模拟的图片,由此可见生成的效果还是可以的。而这个程序的主要思路就是在一个生成随机矩阵的基础上,通过加载网络层训练参数,然后生成的矩阵值按比例乘以网络参数,然后把矩阵保存为图片即可达到模拟生成的效果。而其中参数的调整是基于深层次网络提取的图像特征按公式运算,通过优化器优化参数,通过训练次数的增加,参数也在逐渐改善,最终形成自己需要的图片效果。
在这里插入图片描述
欢迎大家关注公众号,后台回复“风格迁移”
在这里插入图片描述

http://www.xdnf.cn/news/11564.html

相关文章:

  • android 电池监测工具,安卓最强电池监控器Battery Monitor Widget Pro
  • 【速达软件】速达5000系列、V5、S5批量更改税率
  • 实战:单点登录的两种实现方式,附源码
  • DAU、eCPM、ARPU是个什么鬼?不懂这些就是没入行!还有救
  • 揭秘EMBA圈: 开发商卖36套房给同学
  • 对称与魔术初步(五)——刘谦经典魔术《幻境》
  • 从敏思博客的倒闭事件看历史重现...
  • SDK安装及andriod环境搭建
  • 2023年最新的兼职副业大合集,在家就能做的兼职!!!
  • git commit --amend 用法
  • shell进阶--数组--eval二次扫描,mktemp临时文件,install,expect自动化
  • PB函数大全(超全,解析很全面)
  • SocialFi新纪元:Match革新金融与社交的融合艺术
  • 图像处理基础-数字图像处理基础(1)
  • 最新Android开发十大必备工具(图文),2024年最新mysql的索引面试
  • 正定方言—正定少占鱼欢迎您,快速做个正定人
  • PMP--1.4 项目描述
  • Xcode安装与配置(非常详细)从零基础入门到精通,看完这一篇就够了
  • php开发多用户简单商城系统(主体功能有 无购物车模块)
  • HTML 画一颗圣诞树
  • 七天.NET 8操作SQLite入门到实战详细教程(选型、开发、发布、部署)
  • 最全QQ盗号手法分析,全面防御QQ盗号
  • iPhone史上最全的使用教程
  • 性能测试怎么做?性能测试重点和各项性能测试流程(超级详细)
  • kvm虚拟化技术
  • 【转】Ubuntu 10.10 图形安装教程、网络设置、软件源、基本配置(超详细)
  • C语言--输入一个数判断是否为素数(多种方法)
  • 刘涛入职阿里P10,年薪150W+:不做演员,也很优秀
  • 2023年国科大杨力祥《高级操作系统》期末思考题汇总
  • IT老王:Android 之 App开发基础