当前位置: 首页 > ai >正文

SpringAI入门示例

AI编程简介

纯Prompt模式

纯Prompt模式是AI编程中最基础的交互架构。用户通过输入自然语言文本(即Prompt)向AI模型发出指令,模型依据自身预训练所积累的知识和语言理解能力,直接生成相应的文本响应。其工作原理是,用户的Prompt作为输入触发模型的推理过程,模型在预训练形成的语义空间中进行模式匹配和内容生成,无需额外的外部工具或复杂的流程调用。

Agent+function Calling模式

Agent+function Calling模式引入了"Agent"(智能代理)的概念,结合函数调用机制,使AI能够更灵活地处理复杂任务。在该模式中,Agent充当决策者的角色,它首先对用户的需求进行分析和理解,然后根据需求判断需要调用哪些外部工具或函数来完成任务,最后将工具的返回结果进行整合并生成最终响应。

Rag模式

Rag模式,即检索增强生成(Retrieval-Augmented Generation)模式,结合了信息检索和文本生成技术。其核心思想是在生成内容之前,先从外部知识库或数据库中检索相关的信息,然后基于检索到的信息进行内容生成,从而使生成的内容更具针对性和准确性,尤其是在处理需要依赖最新数据或特定领域知识的任务时表现出色。

Fine-tuning模式

Fine-tuning模式是基于预训练模型进行进一步优化的架构。预训练模型通常在大规模通用数据集上进行训练,具备一定的通用语言理解或任务处理能力,但在特定领域或特定任务上的表现可能不够理想。Fine-tuning模式就是利用特定领域或任务的小规模数据集,对预训练模型进行微调,通过调整模型的部分或全部参数,使其更好地适应目标任务。

示例Demo

pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>3.4.4</version><relativePath/> <!-- lookup parent from repository --></parent><groupId>com.wdz</groupId><artifactId>spring-ai</artifactId><version>0.0.1-SNAPSHOT</version><name>spring-ai</name><description>spring-ai</description><url/><licenses><license/></licenses><developers><developer/></developers><scm><connection/><developerConnection/><tag/><url/></scm><properties><java.version>17</java.version><spring-ai.version>1.0.0-M7</spring-ai.version></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-starter-model-ollama</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId></dependency></dependencies><dependencyManagement><dependencies><dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-bom</artifactId><version>${spring-ai.version}</version><type>pom</type><scope>import</scope></dependency></dependencies></dependencyManagement><build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId></plugin></plugins></build></project>

配置ChatClient

package com.wdz.springai.configer;import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.client.advisor.MessageChatMemoryAdvisor;
import org.springframework.ai.chat.client.advisor.SimpleLoggerAdvisor;
import org.springframework.ai.chat.memory.ChatMemory;
import org.springframework.ai.ollama.OllamaChatModel;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class OllamaConfigure {@Beanpublic ChatClient chatClient(OllamaChatModel ollamaModel, ChatMemory chatMemory) {return ChatClient.builder(ollamaModel).defaultSystem("你是一个安全顾问,从安全角度回答问题").defaultAdvisors(new SimpleLoggerAdvisor(),new MessageChatMemoryAdvisor(chatMemory)).build();}
}

配置ChatMemory

package com.wdz.springai.configer;import org.springframework.ai.chat.memory.ChatMemory;
import org.springframework.ai.chat.memory.InMemoryChatMemory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class ChatMemoryConfigure {@Beanpublic ChatMemory chatMemory(){return  new InMemoryChatMemory();}
}

配置信息

spring.application.name=spring-ai
spring.ai.ollama.base-url=http://localhost:11434
spring.ai.ollama.chat.model=deepseek-r1:1.5blogging.level.org.springframework.ai=debug

调用chat

package com.wdz.springai.controller;import org.springframework.ai.chat.client.ChatClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;@RestController
public class ChatController {@Autowiredprivate ChatClient client;/*** chat接口*/@RequestMapping("/chat")public String chat(String content) {return client.prompt().user(content).call().content();}/*** stream chat接口*/@RequestMapping(value = "/streamChat",headers = "Accept=text/html;charset=utf-8")public Flux<String> streamChat(String content) {return client.prompt().user(content).stream().content();}
}
http://www.xdnf.cn/news/985.html

相关文章:

  • CmStick CmStick ME|精工品质与工业级安全的加密狗之选[特殊字符][特殊字符]
  • 【踩坑tip】解决两个一样的USB设备插入后第二个识别失败的问题
  • 使用Mybaitis-plus提供的各种的免写SQL的Wrapper的使用方式
  • 【C++教程】%lf和%f的区别
  • C++算法(10):二叉树的高度与深度,(C++代码实战)
  • RabbitMQ常见面试题回答重点
  • HAL库(STM32CubeMX)——高级ADC学习、HRTIM(STM32G474RBT6)
  • 如何在邮件主题行中巧妙融入品牌特色?
  • 精准评估机器学习模型:从混淆矩阵到核心指标的深度解析+面试常见问题及解析(看这篇就够了)
  • 海事局发布《船舶智能监控系统技术指南(1.0)》,解读智驱力产品为何成为最佳选择!
  • 外键与多表关联查询
  • python-68-时间戳不一致的时间序列的可视化展示
  • 考研单词笔记 2025.04.21
  • Cpp实现window上cmd执行效果
  • 七种驱动器综合对比——《器件手册--驱动器》
  • RHCSA Linux系统 命令的解释器 – shell
  • 集成电路流片随笔17:jtag子模块1
  • 朴素贝叶斯(Naive Bayes)
  • 创建kaggle实现微调(kaggle创建)
  • 系分论文《论数据中台建设的分析和应用》
  • 每天五分钟机器学习:凸优化
  • 【MQ篇】初识MQ!
  • 使用Cloudflare加速网站的具体操作步骤
  • 进程和线程(1)
  • HyperDefect-YOLO:基于超图计算的工业缺陷检测算法解析
  • 关于综合能源服务认证证书的全解析专业认证团队
  • 小迪安全-112-yii反序列化链,某达oa,某商场,影响分析
  • MMIO、IOMAP 和 IOMMU 总结
  • 【Easylive】使用Seata解决分布式事务问题
  • Android 中实现 GIF 图片动画