当前位置: 首页 > ai >正文

Day54打卡 @浙大疏锦行

知识点回顾:

  1. 传统计算机视觉发展史:LeNet-->AlexNet-->VGGNet-->nceptionNet-->ResNet
  2. inception模块和网络
import torch
import torch.nn as nnclass Inception(nn.Module):def __init__(self, in_channels):"""Inception模块初始化,实现多尺度特征并行提取与融合参数:in_channels: 输入特征图的通道数"""super(Inception, self).__init__()# 1x1卷积分支:降维并提取通道间特征关系# 减少后续卷积的计算量,同时保留局部特征信息self.branch1x1 = nn.Sequential(nn.Conv2d(in_channels, 64, kernel_size=1),  # 降维至64通道nn.ReLU()  # 引入非线性激活)# 3x3卷积分支:通过1x1卷积降维后使用3x3卷积捕捉中等尺度特征# 先降维减少计算量,再进行空间特征提取self.branch3x3 = nn.Sequential(nn.Conv2d(in_channels, 96, kernel_size=1),  # 降维至96通道nn.ReLU(),nn.Conv2d(96, 128, kernel_size=3, padding=1),  # 3x3卷积,保持空间尺寸不变nn.ReLU())# 5x5卷积分支:通过1x1卷积降维后使用5x5卷积捕捉大尺度特征# 较大的感受野用于提取更全局的结构信息self.branch5x5 = nn.Sequential(nn.Conv2d(in_channels, 16, kernel_size=1),  # 大幅降维至16通道nn.ReLU(),nn.Conv2d(16, 32, kernel_size=5, padding=2),  # 5x5卷积,保持空间尺寸不变nn.ReLU())# 池化分支:通过池化操作保留全局信息并降维# 增强特征的平移不变性self.branch_pool = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),  # 3x3最大池化,保持尺寸nn.Conv2d(in_channels, 32, kernel_size=1),  # 降维至32通道nn.ReLU())def forward(self, x):"""前向传播函数,并行计算四个分支并在通道维度拼接参数:x: 输入特征图,形状为[batch_size, in_channels, height, width]返回:拼接后的特征图,形状为[batch_size, 256, height, width]"""# 注意,这里是并行计算四个分支branch1x1 = self.branch1x1(x)  # 输出形状: [batch_size, 64, height, width]branch3x3 = self.branch3x3(x)  # 输出形状: [batch_size, 128, height, width]branch5x5 = self.branch5x5(x)  # 输出形状: [batch_size, 32, height, width]branch_pool = self.branch_pool(x)  # 输出形状: [batch_size, 32, height, width]# 在通道维度(dim=1)拼接四个分支的输出# 总通道数: 64 + 128 + 32 + 32 = 256outputs = [branch1x1, branch3x3, branch5x5, branch_pool]return torch.cat(outputs, dim=1)
上述模块变化为[B, C, H, W]-->[B, 256, H, W]model = Inception(in_channels=64)
input = torch.randn(32, 64, 28, 28)
output = model(input)
print(f"输入形状: {input.shape}")
print(f"输出形状: {output.shape}")  

class InceptionNet(nn.Module):def __init__(self, num_classes=10):super(InceptionNet, self).__init__()self.conv1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))self.inception1 = Inception(64)self.inception2 = Inception(256)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(256, num_classes)def forward(self, x):x = self.conv1(x)x = self.inception1(x)x = self.inception2(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.fc(x)return x
# 创建网络实例
model = InceptionNet()
# 创建一个随机输入张量,模拟图像数据,这里假设输入图像是3通道,尺寸为224x224
input_tensor = torch.randn(1, 3, 224, 224)
# 前向传播
output = model(input_tensor)
print(output.shape)

  1. 特征融合方法阶段性总结:逐元素相加、逐元素相乘、concat通道数增加等
  2. 感受野与卷积核变体:深入理解不同模块和类的设计初衷
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader# 数据预处理
transform = transforms.Compose([transforms.ToTensor(),  # 转为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 归一化
])# 加载CIFAR-10数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=128, shuffle=True)testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=True, transform=transform)
testloader = DataLoader(testset, batch_size=128, shuffle=False)# 定义含空洞卷积的CNN模型
class SimpleCNNWithDilation(nn.Module):def __init__(self):super(SimpleCNNWithDilation, self).__init__()# 第一层:普通3×3卷积,捕捉基础特征self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)  # 第二层:空洞卷积,dilation=2,感受野扩大(等效5×5普通卷积感受野)self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=2, dilation=2)  # 第三层:普通3×3卷积,恢复特征对齐self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)  self.pool = nn.MaxPool2d(2, 2)  # 池化层self.relu = nn.ReLU()# 全连接层,根据CIFAR-10尺寸计算:32×32→池化后16×16→...→最终特征维度需匹配self.fc1 = nn.Linear(64 * 8 * 8, 256)  self.fc2 = nn.Linear(256, 10)  def forward(self, x):# 输入: [batch, 3, 32, 32]x = self.conv1(x)  # [batch, 16, 32, 32]x = self.relu(x)x = self.pool(x)   # [batch, 16, 16, 16]x = self.conv2(x)  # [batch, 32, 16, 16](dilation=2 + padding=2 保持尺寸)x = self.relu(x)x = self.pool(x)   # [batch, 32, 8, 8]x = self.conv3(x)  # [batch, 64, 8, 8]x = self.relu(x)x = x.view(-1, 64 * 8 * 8)  # 展平x = self.fc1(x)x = self.relu(x)x = self.fc2(x)return x# 初始化模型、损失函数、优化器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SimpleCNNWithDilation().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)# 训练函数
def train(epoch):model.train()running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:  # 每100个batch打印一次print(f'Epoch: {epoch + 1}, Batch: {i + 1}, Loss: {running_loss / 100:.3f}')running_loss = 0.0# 测试函数
def test():model.eval()correct = 0total = 0with torch.no_grad():for data in testloader:images, labels = data[0].to(device), data[1].to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy on test set: {100 * correct / total:.2f}%')# 训练&测试流程
for epoch in range(5):  # 简单跑5个epoch示例train(epoch)test()

@浙大疏锦行

http://www.xdnf.cn/news/14370.html

相关文章:

  • 37-Oracle 23 ai Shrink Tablespace(一键收缩表空间)
  • Composer 的 PHP 依赖库提交教程
  • 【Qt】Qt 基础
  • Redis-CPP通用接口
  • Leetcode 3584. Maximum Product of First and Last Elements of a Subsequence
  • 139. 单词拆分
  • (LeetCode 每日一题) 1432. 改变一个整数能得到的最大差值(贪心)
  • React组件通信——context(提供者/消费者)
  • MySQL常用函数详解之字符串函数
  • nohz_full 参数对内核软硬锁检测机制的影响分析
  • 嵌入式学习笔记 - SH79F6441 堆栈栈顶可以是片上内部RAM(00H-FFH)的任意地址怎么理解
  • (91)课113:存储函数与存储过程的区别总结。
  • DP刷题练习(三)
  • Golang 解大整数乘法
  • Python Pillow 库详解文档
  • pythton 语言的独特语法
  • Axure应用交互设计:多种类型元件实现新增中继器数据
  • 【springcloud】快速搭建一套分布式服务springcloudalibaba(五)
  • Python爬虫实战:研究Mr. Queue相关技术
  • 【Java SE】类和对象(3)
  • Kafka源码P2-生产者缓冲区
  • 基于大模型预测缺铁性贫血的综合技术方案大纲
  • 记录一次 Oracle 表空间不足问题的解决过程
  • Linux进程间通信(上)
  • Proteus8.17-LCD12864液晶屏幕仿真模型
  • 华为OD机试-考勤信息-双指针(JAVA 2025B卷)
  • AI是什么?大模型、语料、训练、推理、机器学习、神经网络等专业名词如何关联
  • 基于docker的nocobase本地部署流程
  • CPU的异常处理
  • PC16550 UART接收中断处理完整示例代码