当前位置: 首页 > ai >正文

Day52打卡 @浙大疏锦行

知识点回顾:

  1. 随机种子
  2. 内参的初始化
  3. 神经网络调参指南
    1. 参数的分类
    2. 调参的顺序
    3. 各部分参数的调整心得
import torch
import numpy as np
import os
import random# 全局随机函数
def set_seed(seed=42, deterministic=True):"""设置全局随机种子,确保实验可重复性参数:seed: 随机种子值,默认为42deterministic: 是否启用确定性模式,默认为True"""# 设置Python的随机种子random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) # 确保Python哈希函数的随机性一致,比如字典、集合等无序# 设置NumPy的随机种子np.random.seed(seed)# 设置PyTorch的随机种子torch.manual_seed(seed) # 设置CPU上的随机种子torch.cuda.manual_seed(seed) # 设置GPU上的随机种子torch.cuda.manual_seed_all(seed)  # 如果使用多GPU# 配置cuDNN以确保结果可重复if deterministic:torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = False# 设置随机种子
set_seed(42)
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 定义极简CNN模型(仅1个卷积层+1个全连接层)
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()# 卷积层:输入3通道,输出16通道,卷积核3x3self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)# 池化层:2x2窗口,尺寸减半self.pool = nn.MaxPool2d(kernel_size=2)# 全连接层:展平后连接到10个输出(对应10个类别)# 输入尺寸:16通道 × 16x16特征图 = 16×16×16=4096self.fc = nn.Linear(16 * 16 * 16, 10)def forward(self, x):# 卷积+池化x = self.pool(self.conv1(x))  # 输出尺寸: [batch, 16, 16, 16]# 展平x = x.view(-1, 16 * 16 * 16)  # 展平为: [batch, 4096]# 全连接x = self.fc(x)  # 输出尺寸: [batch, 10]return x# 初始化模型
model = SimpleCNN()
model = model.to(device)# 查看模型结构
print(model)# 查看初始权重统计信息
def print_weight_stats(model):# 卷积层conv_weights = model.conv1.weight.dataprint("\n卷积层 权重统计:")print(f"  均值: {conv_weights.mean().item():.6f}")print(f"  标准差: {conv_weights.std().item():.6f}")print(f"  理论标准差 (Kaiming): {np.sqrt(2/3):.6f}")  # 输入通道数为3# 全连接层fc_weights = model.fc.weight.dataprint("\n全连接层 权重统计:")print(f"  均值: {fc_weights.mean().item():.6f}")print(f"  标准差: {fc_weights.std().item():.6f}")print(f"  理论标准差 (Kaiming): {np.sqrt(2/(16*16*16)):.6f}")# 改进的可视化权重分布函数
def visualize_weights(model, layer_name, weights, save_path=None):plt.figure(figsize=(12, 5))# 权重直方图plt.subplot(1, 2, 1)plt.hist(weights.cpu().numpy().flatten(), bins=50)plt.title(f'{layer_name} 权重分布')plt.xlabel('权重值')plt.ylabel('频次')# 权重热图plt.subplot(1, 2, 2)if len(weights.shape) == 4:  # 卷积层权重 [out_channels, in_channels, kernel_size, kernel_size]# 只显示第一个输入通道的前10个滤波器w = weights[:10, 0].cpu().numpy()plt.imshow(w.reshape(-1, weights.shape[2]), cmap='viridis')else:  # 全连接层权重 [out_features, in_features]# 只显示前10个神经元的权重,重塑为更合理的矩形w = weights[:10].cpu().numpy()# 计算更合理的二维形状(尝试接近正方形)n_features = w.shape[1]side_length = int(np.sqrt(n_features))# 如果不能完美整除,添加零填充使能重塑if n_features % side_length != 0:new_size = (side_length + 1) * side_lengthw_padded = np.zeros((w.shape[0], new_size))w_padded[:, :n_features] = ww = w_padded# 重塑并显示plt.imshow(w.reshape(w.shape[0] * side_length, -1), cmap='viridis')plt.colorbar()plt.title(f'{layer_name} 权重热图')plt.tight_layout()if save_path:plt.savefig(f'{save_path}_{layer_name}.png')plt.show()# 打印权重统计
print_weight_stats(model)# 可视化各层权重
visualize_weights(model, "Conv1", model.conv1.weight.data, "initial_weights")
visualize_weights(model, "FC", model.fc.weight.data, "initial_weights")# 可视化偏置
plt.figure(figsize=(12, 5))# 卷积层偏置
conv_bias = model.conv1.bias.data
plt.subplot(1, 2, 1)
plt.bar(range(len(conv_bias)), conv_bias.cpu().numpy())
plt.title('卷积层 偏置')# 全连接层偏置
fc_bias = model.fc.bias.data
plt.subplot(1, 2, 2)
plt.bar(range(len(fc_bias)), fc_bias.cpu().numpy())
plt.title('全连接层 偏置')plt.tight_layout()
plt.savefig('biases_initial.png')
plt.show()print("\n偏置统计:")
print(f"卷积层偏置 均值: {conv_bias.mean().item():.6f}")
print(f"卷积层偏置 标准差: {conv_bias.std().item():.6f}")
print(f"全连接层偏置 均值: {fc_bias.mean().item():.6f}")
print(f"全连接层偏置 标准差: {fc_bias.std().item():.6f}")

@浙大疏锦行

http://www.xdnf.cn/news/13609.html

相关文章:

  • linux驱动开发(7)-互斥与同步
  • 从0到1做一个“任务管理系统”:Spring Boot + Vue 实战教程(含源码)
  • js实现输入高亮@和#后面的内容
  • uniapp 腾讯云 COS 文件管理进阶(文件夹分类与批量操作)
  • ThreadLocal为什么会导致内存泄漏(详细讲解)
  • Android NumberPicker使用大全
  • 数据管理四部曲:元数据管理、数据整合、数据治理、数据质量管控
  • ArcGIS数据管理与转换、地图制作、数据制备、矢量空间分析、栅格空间分析、空间插值、三维分析、高级建模
  • Packagerun:VSCode 扩展 快捷执行命令
  • Python第八周作业
  • ZeroTier+CCproxy+Proxifier实现内网穿透和流量转发
  • 让报表成为生产现场的“神经系统”,推动管理自动化升级
  • 第30节 Node.js C/C++ 插件
  • Appium+python自动化(二十一)- Monkey指令操作手机
  • Vue3+TypeScript实现访问者模式
  • PyTorch深度学习框架60天进阶学习计划-第57天:因果推理模型(二)- 高级算法与深度学习融合
  • ARM 和 x86_64是什么关系
  • 论文阅读:speculative decoding
  • 校赛2025迎新杯题解
  • 欧盟RED网络安全标准EN 18031-2的要求
  • 什么是序列化?反序列化? 场景使用? 怎么实现???
  • 「ECG信号处理——(17)基于小波熵阈值的R峰检测(与时域-频域-多尺度小波法对比)」2025年6月12日
  • Docker 安装 Oracle 12C
  • 大厂Java技术面试实录:从基础到架构,谢飞机的面试之旅
  • springboot+mybatis面试题
  • MySQL行锁、记录锁、间隙锁、临建锁、意向锁、表锁
  • 体育赛事直播平台的数据架构:从实时统计到深度洞察
  • 运放负反馈电路原理分析
  • 卡通幼儿园教育通用可爱PPT模版分享
  • 瑞芯微 MIPI D-PHY 接收器(RX)驱动学习笔记